Efficient FPGA Implementation of Conjugate Gradient Methods for Laplacian System using HLS

نویسندگان

  • Sahithi Rampalli
  • Natasha Sehgal
  • Ishita Bindlish
  • Tanya Tyagi
  • Pawan Kumar
چکیده

In this paper, we study FPGA based pipelined and superscalar design of two variants of conjugate gradient methods for solving Laplacian equation on a discrete grid; the first version corresponds to the original conjugate gradient algorithm, and the second version corresponds to a slightly modified version of the same. In conjugate gradient method to solve partial differential equations, matrix vector operations are required in each iteration; these operations can be implemented as 5 point stencil operations on the grid without explicitely constructing the matrix. We show that a pipelined and superscalar design using high level synthesis written in C language leads to a significant reduction in latencies for both methods. When comparing these two, we show that the later has roughly two times lower latency than the former given the same degree of superscalarity. These reductions in latencies for the newer variant of CG is due to parallel implementations of stencil operation on subdomains of the grid, and dut to overlap of these stencil operations with dot product operations. In a superscalar design, domain needs to be partitioned, and boundary data needs to be copied, which requires padding. In 1D partition, the padding latency increases as the number of partitions increase. For a streaming data flow model, we propose a novel traversal of the grid for 2D domain decomposition that leads to 2 times reduction in latency cost involved with padding compared to 1D partitions. Our implementation is roughly 10 times faster than software implementation for linear system of dimension 10000× 10000.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FPGA Implementation of a Hammerstein Based Digital Predistorter for Linearizing RF Power Amplifiers with Memory Effects

Power amplifiers (PAs) are inherently nonlinear elements and digital predistortion is a highly cost-effective approach to linearize them. Although most existing architectures assume that the PA has a memoryless nonlinearity, memory effects of the PAs in many applications ,such as wideband code-division multiple access (WCDMA) or orthogonal frequency-division multiplexing (OFDM), can no longer b...

متن کامل

An Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems

In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...

متن کامل

A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems

In this paper‎, ‎two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS})‎ ‎conjugate gradient method are presented to solve unconstrained optimization problems‎. ‎A remarkable property of the proposed methods is that the search direction always satisfies‎ ‎the sufficient descent condition independent of line search method‎, ‎based on eigenvalue analysis‎. ‎The globa...

متن کامل

Energy-efficient FPGA Implementation of the k-Nearest Neighbors Algorithm Using OpenCL

Modern SoCs are getting increasingly heterogeneous with a combination of multi-core architectures and hardware accelerators to speed up the execution of computeintensive tasks at considerably lower power consumption. Modern FPGAs, due to their reasonable execution speed and comparatively lower power consumption, are strong competitors to the traditional GPU based accelerators. High-level Synthe...

متن کامل

Preconditioned Hybrid Conjugate Gradient Algorithm for P-laplacian

In this paper, a hybrid conjugate gradient algorithm with weighted preconditioner is proposed. The algorithm can efficiently solve the minimizing problem of general function deriving from finite element discretization of the p-Laplacian. The algorithm is efficient, and its convergence rate is meshindependent. Numerical experiments show that the hybrid conjugate gradient direction of the algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018